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Relativistic Effects in Aromatic Molecules 

Orbit-Orbit Coupling in the Presence of a Magnetic Field 
Evaluation of Integrals Involving" the Interelectronic Coordinate* 

By 

RALPH E. CHRISTOFFERSEN ~ and G. G. HALL 

Evaluation of the relativistic correction due to the orbit-orbit operator of the ]~reit 
Hamiltonian has been considered in general, including the presence of a magnetic field. For 
conjugated molecules, the change in energy due to this relativistic effect is shown to be expres- 
sible in terms of two types of integrals and their derivatives. The interaction results in an inter- 
molecular contribution to the diamagnetic susceptibility which, for two parallel benzene rings, 
is found to be smaller than the molecular terms by a factor of a s. Several molecular integrals 
not previously evaluated were encountered, and their evaluation as asymptotic expansions is 
discussed. 

Die Berechnung eines relativistischen Termes, n~mlich des Bahn-Bahn-Anteiles des 
Breit'schen Hamilton-Operators, ist bei vorhandenem ~agnetfeld in allgemeiner Form durch- 
gefiihrt worden. Bei konjugierten Molekfilen erseheinen im Ausdruck ffir die zugehSrige 
Energie~nderung zwei Arten yon Integralen und ihren Ableitungen. Die Wechselwirkung 
liefert einen intermolekularen Beitrag zur diamagnetischen Suszeptibilit~t, der allerdings im 
Fall zweier paralleler Benzolringe um den Faktor a 2 kleiner als die innermolekularen Terme 
ist. In diesem Zusammenhang traten einige bisher nieht benStigte Integrale auf, deren asymp- 
totisehe Entwickhing durchgefiihrt wurde. 

Nous avons 6tudi6, en forme g~n@rale, la correction relativiste due a l'operateur orbite- 
orbite de Breit en presence d'un champ magn6tique. Pour ]es molecules conjugu6es, l'effet 
~nerggtique de ee terme peut ~tre exprim~ par deux types d'int6grales et leurs d~riv@es. La 
contribution intermol~culaire a la susceptibilit6 diamagnetique est trouv~e, pour deux 
noyaux parall~les de benz@ne, d'gtre d'un facteur a 2 plus petit que les termes mol6culaires. 
Quelques int6grales mol@culaires, inealcul6es jusque la, ont 6t5 @valu~es par expansion asymp- 
totique. 

I. Introduction 
I t  is now well known tha t  the s tudy  of relativist ic corrections, al though often 

small in  magni tude  for systems with low nuclear  charges, can offer much new 
insight  into physical and  chemical processes. Al though some operators corres- 
ponding to relativist ic effects have been studied in  great detail, such as spin- 
orbit  and  spin-spin operators, there has been no general t r ea tmen t  for another  
operator of this type,  namely  the orbi t -orbi t  operator. This paper  gives a general  
t r ea tmen t  of mat r ix  elements over this operator, including the presence of a 
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magnetic field, and employs mathematical  techniques tha t  may  be quite useful in 
treating other operators of a similar type. Also, this paper considers how the 
presence of the magnetic field and orbit-orbit interaction may  affect the quantum 
mechanical theories [4, 6, 3] concerning diamagnetic susceptibility. 

Within a crystal, one of the ways in which the molecules may  interact is via 
the magnetic field. In  particular, the orbital angular momentum of an electron 
in one aromatic ring may  produce a magnetic field which interacts with the orbital 
angular momentum of another electron in a neighboring ring. The next section 
deals directly with the nature of this effect, by treating the general evaluation of 
matr ix  elements of the orbit-orbit operator, with special reference to the manner 
in which wavefunctions should be chosen when magnetic fields are present. The 
third section deals with the specific case of two parallel benzene rings, where the 
geometry suggests that  the effect might be significant. There are also other 
effects from neighbors which are of the same order of magnitude, and a discussion 
of these, as well as the orbit-orbit effect, appears in section four. Finally, during 
the course of this work, some integrals involving the interelectronic coordinate 
arose that  have not been evaluated previously, and the method of evaluation and 
error analysis are included in the Appendix. 

II. General Treatment of Matrix Elements 

The interaction of the orbitM angular momenta  of electrons was considered 
first by BREIT [1], in a relativistic t reatment  of the Schroedinger equation. When 
generalized to N electrons, the orbit-orbit t Iamil tonian in atomic units [10] is 

J + : - � 8 9  + lf jlc " (l"Jl~ ~ lP])1~k ] 

in which pj  is the momentum of the ?'th electron, cr is the fine structure constant 
and rj~ is the scalar interelectronic distance. In  later use, the subscripts ?" and k 
will refer to electrons in different molecules, each molecule containing N/2 elec- 
trons. 

In the presence of an external magnetic field, the momentum becomes depen- 
dent upon the vector potential, i.e., p] = p]  + c~Aj = Ill (Vj + ic~Aj), where 
atomic units are used. Thus, (1) can be rewritten as 

#d = \g /~<~ rj~ [V3"" Vk + i~ (Aj" Ve + Vj" Ae) - -  ~2 Aj" As] + 

1 
+ r F  [rj~" (rj~" Vj) Ve + i~ (rje" (r~'e �9 Vj) A~ + 

+ rjk" (rj~. V~) Aj) -- ~2 (vjk �9 (r~.~ �9 A~.) A~)]} (2) 

where Aj is the vector potential of the ]th electron. I f  the magnetic field H is 
uniform, then A = { ( H •  r), where the origin of r is arbitrary, so tha t  the 
kinetic energy depends upon the choice of origin, and is not the same around 
equivalent nuclei. This can be avoided by the use of basis orbitals which contain 
a phase factor. The proper choice of this phase factor has been shown [3] to be 

co~ (]) = q~ (7") e--  ic< d~j" r] , (3) 
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where ACj is the  vector  potent ia l  measured  f rom nucleus fi, and ~0~ (j) is an a tomic 
orbital*, independent  of  A sj. B y  the use of  (3), we see t ha t  

- -  i c~  A c j  �9 r j  
(Vj + i s  & )  oe  (j) = e [Vj + i s  ( &  - -  A~j)] ~ ( j ) .  (l) 

We now consider the general ma t r ix  element, Hcy~, over  orbitals of the type  

o~3, i. e., 

H~ve~ = I I  exp {ic~ [(A~j - -  Aei)" rs + (Ave - -  A~e)" eel} 

~ (j) & (~) ~ (j, ~) ~ (j) ~ (k) &j ,  k.  (5) 

Next ,  the  Par i ser -Par r  approx imat ion  of "zero differential over lap"  [7] is employ-  
ed, i. e., these elements vanish except  when/5 = d and y = e. When  this .is used in 
conjunction with (4), we obtain  

(~2) { I [ V , ' V e + i ~ ( ( A , - - A ~ , ) ' V e +  

+ Vj" (A~ - -  A./~)) - -  ~ (Aj - -  A~j) �9 (A~ - -  A~e)] + 

+ [rj'k �9 (r3'k �9 Vj) V~ + i s  (rje �9 (rje" Vj) (Ae - -  Ave) + 

+ r je -  (rje" Vk) (A~ - -  A~j)) - 

r~ (rje" [rje" (Aj - -  Aej)] [A~ - -  Ave])3} ~'~ (j) ~v (k) d'r~, ~ .  (6) 

First  we t rea t  the t e rms  in r -~ which are usually called the  non-re ta rda t ion  ik , 
terms.  I t  can be shown that ,  for ordinary diamagnet ic  substances like benzene, 
the  coefficients of the  integrals involving the  t e rms  linear in the  field vanish ~*. 
Then, by  using the  general p roper ty  t h a t  

V~ ~oe (]) = - -  V~ ~ (j) ,  (7) 

and also noting t h a t  r3i = r j -  R#, which means  t h a t  A s ' -  A#~. = �89 ( H  • R#), 
we m a y  write the contr ibut ion of  the non-re tarded por t ion as 

o~ e 1 
H ~  = ~ { V ~ ' V ,  - -  ~ H~ (X~ X v + ~ ~v)} ff ~ (J) ~,* (~) ~ ~ (i) ~,  (~) &J. ~, 

(8) 

where R~ has components  (X~, Y~, Zr and we have assumed tha t  the  magnet ic  
field is directed along the z axis. We note  tha t ,  in order to evalua te  the non- 
re ta rda t ion  terms,  it is only necessary to be able to calculate the  ordinary  coulomb 
electron repulsion integral.  

Next ,  we consider the re ta rda t ion  terms.  As before, the coefficients of  the  
t e rms  linear in the  field will vanish for ordinary  diamagnet ic  substanees such as 
benzene, and only four te rms  remain  to be considered. By  using (7), the two 
te rms  independent  of  the  field, H ~  I), can be wri t ten  as 

�9 Throughout this paper, greek subscripts will be used to refer to nuclei, and italic sub- 
scripts will be used to refer to electrons. 

�9 * The proof of this for molecules with doubly occupied orbitMs c~n be seen by an exami- 
nation of equation (5.07) in reference [3]. 
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We now note that  VJ (i/r3"~) = - -  rj~/ra~., and also that  

v j  [~  (i)/r~] = ~ (j) V~ (1Iris) + (l/rj~) v j  ~ (]), (to) 
which allows (9) to be rewritten as 

16 ~ ' 

where the term on the left of (50) has been omitted, since it can be transformed to 
a surface integral which vanishes as the surface gets large. Finally, we use the 
relation V~ (r~k) = - -  r ~ / r ~  to rewrite (~1) eventually as 

H ~  I) = + (~= V~ V~/32) ~ r (j) r (k) ri~ Te (]) r (k) dva', ~. (12) 

By entirely similar procedures the remaining two terms of the retardation 
portion can be evaluated, and the general matrix element written as the sum of 
H~I~ and HI~, i. e., 

a 2 

+ 1-~[V ~zVv ~ - -  ~ (B'Vz) (C'Vr)] ~ ~ (])~v* (k) r i k ~  (?') ~ (k) d~1, ~}, (13) 
w h e r e B = H •  R ~ , a n d C = H •  R r. 

There are several things to be noted about the above result. First of all, the 
only approximation that  has been made was that  of the Pariser-Parr approxima- 
tion. Secondly, by transforming the operators before performing the integrations, 
instead of attempting to evaluate integrals over complicated operators, a final 
expression was obtained which contains only two integrals. The first of these is 
the well known electron repulsion integral, which is met in molecular calculations 
of almost any kind, and the methods of evaluating it are well known [9]. The 
integral which appears in the retardation term is not as well known, and the 
techniques for its evaluation have only been given for the simplest case, namely 
when all the orbitals are ~s orbitals [2]. 

III. Application to Two Parallel Benzene Rings 

We shall now confine our attention to the special case of the twelve o~ electrons 
involved in two parallel benzene rings. I t  is desired to calculate the perturbation 
energy, given by 

6 12 

E = ~  ~ . . . ~ k  ~* (i, 2, . . . ,12) 5 / F ( ) ' , k ) T ( l , 2  . . . .  ,12) dr1 .... 12. (14) 
j = l  ~=7  

I t  will be assumed that  the total wave function T can be written as the product 
T1 (i, 2, . . . ,  6) T2 (7, 8 . . . . .  ~2), where the first six electrons are all in the same 
ring, and similarly for the last six electrons. This corresponds to the physical 
assumption that  there is no exchange between electrons in different rings. A 
single, normalized Slater determinant will be used for T1 (similarly for T~), i. e., 

~1 = (6 !)-�89 det {r (t) ~0 (2) r (3) ~1 (4) r  (5) ~-1 (6)}, (15) 

in which r r and r  are orthonorma] molecular orbitals and Cg and ~ ,  are 
orthogonal due to the choice of spin factor. In particular, the ~z, which are the 

spatial parts ofr  and r  are chosen from the set of orthonormal orbitals 

~ = V61 ~=~ e x p / ~  / ~o~. (# = 0, _+ l, _+ 2).  (i6) 

18" 
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The ~o~ are the  field-dependent orbitals given in (3), and the ~ have  been chosen 
to be the  ordinary  Sla ter- type 2pz orbitals. Strict ly speaking, orbitals or thogona-  
lized b y  the L6wdin scheme [5] would be the proper  choice for the F~, bu t  for the  
large internuclear  distances t ha t  were encountered here, the use of  non-ortho-  
gonalized orbitals gives essentially equivalent  results. 

We m a y  now write (i4) as 
6 12 

E = (6 !)-~ ~ ~ I . . .  I det {+0" (i) ~ *  (2) r  (3) ~ *  (4) r  (5 )~ '1  (6)} 
J=l ~=7 

�9 det  {~b *(7) ~ *  (8) ~b* (9) ~ (10) r  ( l i )  ~-*~2 (~2)} ~ (% k) 

�9 det  {~b01 (1)~01 (2)r (3)~11 (~)q~--ll (5)~--11 (6)} (i7) 

�9 ge t  {~02 (7) ~02 (8) r (9) ~12 (~0) (~-12 ( ~ )  (P-12 ( ~ ) }  tiT] . . . . .  12, 

where the second subscript  of  r refers to the  ring number .  I f  we now expand  the  
de te rminants  in (i7), i t  can easily be shown t h a t  the only non-zero te rms  have  the  
form 

Jz,  v = ~ ~ (J) ~v2* (k) ~ (% k) 2~1 (j) ~2 (k) d~j, ~ . (i8) 

Note  t ha t  none of the exchange integrals t h a t  usual ly arise in molecular  calcula- 
t ions are present,  and this is due to  the assumpt ion  t h a t  there is no exchange of 
electrons between rings. I n  part icular ,  the  only non-zero contr ibutions to  E are 
given by  

E = 4  [Jo,o§247247247247 A- J-l,+l§ �9 (19) 

When  the "zero differential over lap"  concept is applied to the elements  of (19), 
we obtain  the simple result  

6 6 
E = ~, ~=jI ~ (1) ~ (7) ~ (t, 7) ~1  (i) ~ (7) ~1, = 8, ~=~ c ~ .  (20) 

B y  noting fur ther  t ha t  all of the  diagonal t e rms  in (20) give the same result, and 
t h a t  C~ = C~l, and C~  = C~s = Cat, Cxa = C~a = Caa . . . . .  etc., we obta in  

E -= 6 [C n § CI~ § 2 (Ci~ + Cla)]. (2i) 

For  the evaluat ion of the t e rms  in (2i), the origin has been chosen to be half- 
way  between the centers of the two rings, and  the or ientat ion of the x, y, z axes 
is shown in Fig. i. 

Next ,  we consider C n. I f  we use R c - c  = 2.6266 Bohrs ( = i .390 ~)  as the 
carbon-carbon distance between neighbors in a ring, then  

B" Vii = Xll Hz j" V l l  = - -  2.6266 Hz g ~ 0 D~ 

But ,  D n = [(XI~ - -  X n )  ~ + (YI~ - -  Yll) ~ § (ZI~ - -  Zn)e] e, and so 

/)ii (Yi~--Yil) -- 0 . 

Eli D11 

Thus 
~2 

Cll = -{ {[Vll 'VI~ - -  6.89903 . ~  H2~] y (Dll; 2pz, 2pz) § 

+ ~ v11 v ~  ~ (Dll; 2~ ,  2p~)}, (22) 
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where the two basic integrals are defined as 

(D~e; ~ ,  ~ )  = ~ ~*  (1) ~ (7) ; 1 7 ~  (~) %~ (7) Y d~l,7 

(D~; T~, T~2) = ~] ~*  (i) ~s  (7) rl~ ~ l  (l) ~ e  (V) d~,~. (23) 

Similarly for Cx.~, we see that  

~2 1 2 
C~ = ~- [(V~ "Va~ § 6.89903" a ~ Hz ~) y (D~) § ~ V~ V~ (~ (D~a)], (24) 

I 
3 2 

Fig. 1. The coordinate system chosen for the ease of two parallel benzene rings. The y-axis points out of the paper 

where y (D14) and (~ (DI~) are abbreviations for the integra]s in (23). However, the 
orbitMs must be expressed as linear combinations of their components, e. g., 

y (D14) = cos 4 04"y (D14; 2pz, 2pz) § 2 sin s 04 cos ~ 01"y (D14; 2pz, 2px)§ 
§ sin 4 01"y (D14; 2px, 2px), (25) 

where the contribution from non-Coulombic integrals has been neglected. The 
proof that  this term can be omitted is given in the Appendix. 

In  a similar manner, the contribution from C1~ and Cla can be evaluated, 
giving 

~2 
C~2-= ~ [(VI~'V~2 - -  3.44951 cr ~ H~) y (D12) § 

§ ~ V~l V~2 § 35.69744 ~ H~ a (D~2)] (26) 

0~2 
Cla = ~ -  [(V~'Va~ + 3.44951 ~ H~) y (Dla) § 

§ ~ Vll Va~ + 35.69'/44 a~ H ~ . d (Dla)] - 
-D~a 0 
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By substituting the results of (22), (24) and (26) into (2i), we can then separate 
the terms into two types, those independent of the magnetic field, and those 
dependent on Hz 2 . The effect on the diamagnetic susceptibility is then obtained 
as the second derivative of E with respect to Hz, i. e., 

~2 E 3 cr / 
a H~ 2 ' (27) 

where 

] = (6.89903).[y (D14) + y (DI~)- -y  (Dll) - - y  (D12)] + 

+ 17.84872 "l  aD~3 ~(D~3)+ D~ a D ~  (DI~)] " (28) 
~ _  1 ~2 

I f  we then choose L = 4.81~ Bohrs as the distance between the rings, and 3.18 
as the orbital exponent of the Slater-type 2pz (and 2px) orbitals, we then obtain 
the result 

~2 E 
- -  - -  § 7 . 0  X 10  -5 ~ 2 .  (29)  

Z - a H~ 

I V .  D i s c u s s i o n  

From previous work done on benzene in the absence of orbit-orbit coupling, it 
can be seen that,  for two isolated benzene rings, the diamagnetic susceptibility is 
given by  g = - -  25.14 a 2 [3]. Therefore, the orbit-orbit effect on the susceptibility 
due to a parallel nearest neighbor is very small and paramagnetie, and thus will 
tend to decrease the total  measured diamagnetic susceptibility only slightly. 

I t  is interesting to aks if there is a possible classical analog to the orbit-orbit 
effect calculated here. The classical effect which comes closest to this is the change 
in energy of two parallel rings carrying currents in a magnetic field due to their 
mutual  inductance. However, the only way of obtaining a non-zero result for the 
energy is either to allow the rings to move, or to vary the magnetic field. But, 
both of these possibilities are denied in the quantum mechanical calculations done 
here. Thus, it seems that  there is no classical analog, and tha t  the orbit-orbit 
coupling effect discussed here is strictly a quantum effect. 

I t  should also be noted tha t  the effect calculated here is certainly not the only 
effect of the order of magnitude of a s tha t  can be considered. For example, there 
are contributions due to the quantum mechanical analogs of the classical effects 
mentioned previously, which could be considered either by applying an oscillating 
field to the molecules fixed in space, or by  allowing the molecules to vibrate in a 
constant magnetic field. 

Since it has been found here that  the orhit-orbit term does not give a significant 
contribution to the diamagnetic susceptibility, even under favorable conditions, 
it seems tha t  further study of the effects of this order of magnitude on the dia- 
magnetic susceptibility is not warranted, for their magnitude will certainly be 
far below the accuracy with which present day experiments can measure the 
susceptibility. Thus, it seems that,  as far as interactions by  means of orbit-orbit 
coupling (via the magnetic field) is concerned, a consideration of only the isolated 
molecules should give perfectly adequate results for diamagnetic susceptibilities, 
since the contribution of the nearest neighbors to the susceptibility has been 
shown to be smaller than the isolated molecule contribution by  a factor of a S. 
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However, as a relativistic correction, orbit-orbit coupling may become quite 
significant for molecules involving very heavy atoms, for the effect will become 
much more pronounced as the nuclear charge is increased. 

Appendix 
Integral Evaluation. I t  can be seen from (23) in the text  that  two types of 

integrals arise in this work. The first type has been well studied [9], and analytical 
methods are available for its evaluation for all of the Slater-type orbitals involved 
here. Since the value of the distance parameter D ( = ~ R) in these calculations 
was 15 or greater, there is no need to employ the analytical methods, but  an 
asymptotic expansion can be expected to yield entirely equivalent results. The 
asymptotic expansions for most of the y integrals needed here have been given by 
PAI~Ir [8]. The only one not given explicitly in that  paper can be easily obtained 
from the general formula given there, and for completeness, all of the integrals 
needed for these calculations are given below ill atomic units, and c~, 13 refer to the 
two nuclei. 

2 

/ /',,, 
Y / % , \  

Fig. 2. The coordinate system chosen for the e~aluation of the integrals invohring the intereleetronie coordinate 
explicitly 

[ ~  24 s64] 
S~ 2pz (c~ I_) 2pz (13 2) r ~  2 2pz (o~ i) 2pz (13 2) dr12 = ~ L + V + ~ V ]  

~2 [~_ 6 4321 f~ 2p~ (~ i) 2px (13 2) ~ p~ (~ l) 2px (13 2) d~12 = ~ L + D3 ~ j 

[~_ ,2 324]. (A_t) 
~[.[ 2pz (~x t) 2pz (13 2) ~'12 2 p x  (~  l )  2pZ  (13 2) (~T12 = ~ j)8 .-~ ~ - J  

The situation with respect to the ~ integrals was much less satisfactory, since 
the analytical formulae for their evaluation have only been given for all is orbitals 
[2J. Since these integrals also are necessary ingredients of any calculation in 
which it is desired to introduce correlation directly into the basis orhitals, it is 
essential that  the correct behavior of these integrals as a function of D is under- 
stood. Thus, the following asymptotic expansions were developed for these 
integrals. 
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Using the coordinate system shown in Fig. 2, we see that  

r12 = r ~ l  -[- R~f - -  rf2 �9 (A-2) 
Thus 

! 1 
2 r12 = Iris.r12 ]~ = [R~ + r~l ~- r~  • 2 R~ ' r~ l  - -  2 r r  ] ~ 

l 
2'] = {l § (I/R~) [2 R=r " r ~ l -  2 rpl "rf2 § r~ § r~2]} y (A-3) 

where the relation r~l = r r  R~Z has been employed. When R~f is large, the 
second term of (A-3) will be much less than l, and so we may use a binomial 
expansion to give 

1 2 ~ = R~f {t + ? ~  [2 R ~ . ~ I - -  2 ~ f~ .~  + ~ + ~ ]  -- 

1 2 8 R~f [2 R~f.r~l - -  2 rf1"rf2 § r~l + r~2] 2 § 

1 2 + ~ [2 R ~ ' r ~ l  - -  2 rfl "r~2 -I- r~l § r~] a -- 

5 2 2 4 t28/~s [2 R ~ f ' r ~ - -  2 rf~'rf2 ~- r~ + rz~ ] + . . . } .  (A-4) 

Using the real, normalized Slatcr-type orbitals, defined by 

~v (n, l, m) = (2 ~)n+~/2 [(2n)!]-~/2 rn-1  e-~r Sl ,  m (0, q)) , (A-5) 

where Sz, m (0, ~) is a real, normalized spherical harmonic, the contributions from 
the various terms of (A-4) can be evaluated, using either spherical polar or ellip- 
tical coordinates to perform the integration. When all of the terms up to and 
including the term in R~  s are included from (A-4), we obtain the following results 
for the various integrals needed in these calculations. 

~ 2pz (~ l) 2pz (fi 2) r~2 2pz (~ l) 2pz (fi 2) d~h, ~ 

= R ~ f _ t  t D~ 4D ~ 2D 6 128D s 1' (A-6) 

I I  2px (a ~) 2px (fi 2) r~e 2pz (~ i) 2px (fi 2) d~l, 2 

{ 6 ~ ~o~ ~,~,5o~ } (A-7) 
"-R~f I ~ D~ D~ D ~ ~28D s ' 

~[. 2px (~r ~) 2pz (fi 2) r~2 2px (~r i) 2pz (fi 2) dv~,2 
{ ~ ~ 26,37~ ~,ss6,TS5 } (A-S) 

= R ~ f  ~ -~ 2 D 2 ~ D ~ 8 D s 1 2 8  D s ' 

where D = ~ R~.  
I t  is also possible in the following way to obtain an estimate of the size of the 

terms that  have been omitted. When R~f becomes large, the quantities (x~ § 
+ y~ + z~l) and (x~ + y~x + z~) are both spherically symmetric, and the 
integral over the product of these should be the same as the integral over the 
product 2s ~ (cr i) 2s ~ (fi 2). The asymptotic expansion for the integral involving 
all 2s orbitals is given below 

{ 5 75 2625 4,295,025} (A-9) 
=:  Raf t t "~- .D ~ - -  ~ 2) 4 D 6 ~28  D s " 
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This is to be compared with 

(~) J'J" [2pz 2 (~ l) -f- 2.2p2x (er 1)] r12 [2p~ (/~ 2) § 2.2p~x (fi 2)] d~l, 2 

[ 5 697 2613 4,567,1s5 ] (A-~0) 
= R ~  i ~ D2 4D ~ D 6 128D s " 

Complete agreement  in the terms containing D -4 and higher negative powers 
of  D cannot  be expected, since the term in R~-~ ~ from (A-4), which has been omitted, 
contains a component  which will contribute to the term in D -4. l=[owever, an 
estimate of  the error can be obtained from these differences. Since the error is 
likely to be largest in the D -a term we can obtain a general error estimate by  
consideration of  t ha t  te rm alone. ~u D = 5, the coefficients of D -a in (A-9) 
and (A-10) differ by  approximate ly  5.7/4(5)~= .002. Furthermore,  this error 
estimate is not  s imply the error of  a single integral, bu t  is the error of the weighted 
sum of three integrals, wi thout  cancellation of  errors, since all of  the signs are 
alike. Thus, it is more realistic to say tha t  the actual error in the D -4 te rm for a 
given integral is approximate ly  .0007, for D -- 5. This means tha t  these asymp- 
totic expansions given above can be used to give integrals with errors less than  
1~o, even when the integrals involve the carbon-carbon bond distance for neigh- 
bors in benzene-like molecules, for then D = 8. 

Finally,  we consider the integral 

~ 2px (or l) 2px (fi 2) r~ 2pz (cr i) 2pz (fi 2) d~1,2 �9 

I t  can easily be seen by  direct calculation tha t  the first non-zero t e rm which 
contributes to this integral is f rom the term in D -a, and has a magni tude of  9/(16 Da). 
However,  since it was est imated above tha t  the error involved in the weighted 
sum of the integrals of  (A-6), (A-7) and (A-8) was approximate ly  1.5 D -a, it is 
clear t ha t  this integral is negligible, since its first non-zero contribution, and 
p resumably  the largest contribution, is smMler than  the error of  the weighted 
sum of  the  three integrals given above. 
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